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We investigate a continuum formulation of surface growth following the Kardar-Parisi-Zhang
equation [Phys. Rev. Lett. 56, 889 (1986)] with a power-law distribution of the magnitudes of
regional advances. This formulation describes Zhang’s ballistic-deposition model [J. Phys. (Paris)
51, 2129 (1990)] with power-law noise and possibly recent fluid-displacement experiments. Our
exact theory predicts a transition of the scaling behavior from power-law-noise domination to a
Gaussian-noise regime as the power increases. An apparent contradiction with previous simulations
is due to a logarithmic correction to the scaling at the transition and to anomalous-growth effects.
Analogous scaling behaviors are derived for the Edwards-Wilkinson model [Proc. R. Soc. London
Ser. A 381, 17 (1982)] with power-law noise. Our results are supported by simulations.

PACS number(s): 64.60.Ht, 05.40.+j, 05.70.Ln

I. INTRODUCTION AND SUMMARY

The description of the noise-driven growth of a self-
affine interface far from equilibrium is a challenging prob-
lem. Self-affinity in this context means that the width
W (L,t) for an initially flat surface with lateral size L at
time ¢ can be expressed in the scaling form W (L,t) =
L>f(t/L?) where a and z are called the roughness and
dynamical exponents, respectively [1]. The scaling func-
tion f has asymptotic properties so that

th for t « L*
W(Lat) ~ {La for t > L7, (1)

where 8 = a/z is the early-time exponent. This property
occurs for many models of surface growth. An example
is growth models in the universality class of the contin-
uum equation of Kardar, Parisi, and Zhang (KPZ) [2],
which should describe fluid flow, vapor deposition, and
directed polymers. In 141 dimensions, both theory and
simulations give a = 0.5 for bounded Gaussian noise.
However, experiments on immiscible fluid displacement
give « in the range 0.73-0.89 [3,4]. Zhang suggested an
explanation by postulating that the probability distribu-
tion of the noise, 7, in the experiments has a power-law
tail. The distribution can be realized as

L f >
P = {47 orn 2 1 (2)

0 for n < 1.

The exponents o and z are functions of p [5]. The exis-
tence of this type of noise is supported by another recent
fluid-displacement experiment [6].

In addition to its possible experimental relevance,
Zhang’s model is important theoretically. For example,
one should expect that a and z would be universal for
any given p for this model. This is not supported by
numerical simulation, and model-dependent values have
been obtained [7,8]. In fact, the existence of any con-
tinuum description has been doubted [9]. Further, the
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self-affinity of the interface itself has been questioned and
multi-self-affinity suggested [10].

In this paper, we give an exact theory of growth with
power-law noise, which should clarify the situation. We
show the surprising result that « is ezactly given by the
estimate of Zhang [9] and Krug [11]:

o= ap(p) ford+1<p< pe
ag for pe <

3)

in d 4+ 1 dimensions, where

d+2
« = — 4
o) = 03 ()
and ag is the roughness exponent for the KPZ equa-
tion with Gaussian noise. The critical u. is defined by
ap(pe) = ag. The dynamical exponent z is given by the
identity [12,13]

oa+z=2. (5)

This result deviates significantly from previous numeri-
cal findings at p ~ p. bothin 1+ 1 [5,7,8] and 2 + 1 [14]
dimensions and has led to the general belief that it can
only be taken as a rough estimate. The expression (4)
was derived using simple scaling arguments under the as-
sumption that exceptionally large fluctuations dominate
the roughness whenever the power-law noise is relevant.
The large fluctuations correspond to the tail of the dis-
tribution in Eq. (2) and scale as

P(bn) = b~ P(p). (6)

Together with the exponent identity of the underlying
KPZ equation [Eq. (5)], some simple algebra gives the
results [9,11]. In this work, we will make the argument
concrete so that its deficiencies are analyzed. We found
that Eqgs. (3)—(5) are indeed exact, but there is a very long
crossover. This accounts for the apparent contradictions
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with previous simulations. The principal reason for the
crossover is that the scaling of the noise in Eq. (6) does
not hold at small 1 due to the existence of a fixed lower
cutoff in Eq. (2). This leads to a logarithmic correction
to the scaling at u = p.. Another important source of
error is anomalous growth, which occurs when the surface
is highly stretched so that its evolution is dominated by
lattice discretization effects [15,16]. The main results in
this paper have been summarized earlier [17].

Section II discusses the Edwards-Wilkinson (EW)
model [18] with power-law noise. This model, while easily
solvable, already exhibits the transition between power-
law noise and Gaussian noise and a logarithmic correction
to the scaling at the transition. We will derive the exact
scaling exponents and the correction using the proper-
ties of the stable laws for sums of independent random
variables [19]. This particular approach is not directly
generalizable to the KPZ case.

Section III presents the scaling argument and estab-
lishes its exactness for the KPZ case. We start in Sec.
IIT A with a continuum formulation of a regional surface-
advance model. The model treats a normal KPZ sur-
face occasionally perturbed by instantaneous advances
of whole regions. (A KPZ surface is one that evolves
according to the standard KPZ equation with Gaussian
noise.) The magnitude of the perturbation follows a
power law with an appropriate scale-dependent lower cut-
off, enabling, by construction, perfect scaling of the noise
analogous to Eq. (6). Now both the scaling of the under-
lying KPZ dynamics and the perturbation are exact and
Egs. (3) can be proved quite easily. This is numerically
verified in Sec. IIIB. Much of the anomalous growth
is suppressed by simulating the underlying KPZ surface
with a ballistic-deposition model with partial sliding. Fi-
nally, we remove the ad hoc ingredients of the model.
In Sec. IIIC, we argue that introducing a more phys-
ical fixed lower cutoff of the noise magnitude leads to
crossover effects and Eqgs. (3) remain exact. A logarith-
mic crossover at the transition is numerically verified.
Section IIID shows that representing the large fluctua-
tions by regional surface advances is appropriate for the
original Zhang model.

Section IV sketches how the above scaling argument is
applied to the EW case, illustrating the full correspon-
dence between the two problems. The explicit calculation
of the logarithmic correction in this approach is demon-
strated. We discuss that the proper representation of the
power-law noise in the continuum formulation is drasti-
cally different, even though it is the same as the KPZ
case in the discrete models.

Section V focuses on the effect of anomalous growth.
Our scaling argument is based on an underlying KPZ
equation. However, for 4 = d + 1 so that @ = 1, Zhang’s
model generates a fractal aggregate and the interface is
macroscopically rough [20]. Any continuum description
is likely to break down. In Ref. [20], we have reported
an alternative derivation of the exponents for py =d +1
by analyzing anomalous growth only. We will show that
though the two approaches give the same « and z, they
predict different extended scaling behaviors with respect
to the noise intensity. We found that only the anoma-

lous growth picture is the correct description for Zhang’s
model at 4 = d+ 1. As a result, while Zhang and Krug’s
scaling argument has been thought to be an approxima-
tion at larger p and exact at u ~ d + 1, our results show
surprisingly that it is exact at larger u but inappropriate
for the discrete models at u ~ d + 1. We also discuss
how anomalous growth contributes to spurious effects in
the surface correlation measurements, which were inter-
preted as multi-self-affine scaling [10]. We conclude in
Sec. VI with some further discussion.

II. EDWARDS-WILKINSON MODEL WITH
POWER-LAW NOISE

Edwards and Wilkinson introduced the following
Langevin equation to describe sedimentation [18]:

Oh(z,t

% = vV2h(z,t) + n(z,1), (7)
where h(z,t) is the surface height and n(z,t) the noise.
To simulate a surface following the EW equation in 1 +
1 dimensions, we adopt the following discrete evolution
rule:

h(z,t+1)=h(z+1,t+1)

= 1[h(=,t) + h(z + 1,t)] + n(z, t). (8)

We assume periodic boundary conditions and a parallel
updating scheme according to which x runs through all
odd (even) sites at odd (even) t. The discrete uncorre-
lated variables n(x,t) follow the power-law distribution
in Eq. (2). Starting from an initially flat surface, we
measure the average saturated surface width W (L) as
a function of the lattice size L after the roughness has
fully developed. For the very broad noise distribution
with g < 2, the rms fluctuation of the surface diverges.
We define W (L) as the mean absolute value of the surface
fluctuation. A fit to W (L) ~ L™ for L = 32 to 256 gives
the roughness exponents a shown in Fig. 1 as a function
of p. The solid line is the prediction of Krug’s scaling
argument [11]:

az{(,‘l—l—d)/p—d
(2-d)2

for p <2
for2<ypu. (9)

The expected sharp transition at u = 2 is smoothed out
in the numerical measurement. This discrepancy is strik-
ingly similar to that observed for the KPZ case [7,14]. We
will prove that the discrepancies in both cases are due to
crossovers of analogous origins. From our simulations, we
also noticed that the measured o decreases slowly with
increasing L, indicating a long crossover. However, we
are limited to rather small lattices because the dynam-
ical exponent z = 2 is rather large so that the surfaces
relax slowly. In addition, a broad noise distribution at
small p implies a noisy system and long runs are required
to achieve reasonable statistics.

We now present a continuum theory of the EW model
with power-law noise. Both the exactness of Eq. (9) and
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FIG. 1. Measured roughness exponent a« as a func-

tion of the power of the noise distribution g for the
Edwards-Wilkinson model. The solid line plots the exact re-
sult. The discrepancy is due to a long crossover.

the crossover effects will be derived. The noise term in
the EW equation (7) is realized as a superposition of
independent events:

= Z 7]15(.’17 - mz)é(t - ti)v (10)

where 7; follows the power-law distribution (2). The dis-
tribution of the locations (z;,t;) of the noise events is
homogeneous in both space and time, but can be either
random or regular. The scaling properties of the noise
can be characterized by the local fluctuation n;Az?At
over a small region I of widths Az and At, defined by

nIAa:dAt_—./ n(z,t) dzdt = Z’h' (11)

i'=1

The summation is restricted to the IV noise events inside
the region I. Due to the homogeneous distribution,

N ~ Az?At. (12)

At large length scales, IV is large and the sum in Eq.
(11) has a probability distribution converging to a stable
law. From the central limit theorem and its counterparts
for distributions with diverging variances, we learn which
stable law the distribution with various p will converge
to. Using the properties of the stable laws [19], we obtain

NYe ¢, for p < 2
Zn,: ~{(NInN)Y/2¢g  for p=2 (13)
i'=1 N2 ¢ for p > 2,

where {¢ is a standardized Gaussian variable and &, fol-
lows the asymmetric Levy stable law parametrized by pu.
It is already evident that, for 4 < 2, new universality
classes characterized by the Levy stable law arise. For
p > 2, the model crosses back to Gaussian-noise behav-
ior while the crossing is marginal at yu = 2.

Applying a scale transformation z = bx’, t = b*t' and
correspondingly for Az and At, the transformed 77 is

deduced from Egs. (11)-(13) to be:

b(;‘li_l)(dJrz)nI for p < 2
nll ~ _%(d+z)(]nb)%7” fOI‘ M= 2 (14)
bz(d+z)p, for p>2 .

Consider first p < 2. Assuming the scaling form h(z,t) =
beh'(z',t'), Eq. (7) is transformed to
a—z ON a—2g2pr | p(h—1)(d+2) s
b e vb* *V4h' + b\ n7(z,t), (15)
where 7 is substituted by 7y, which is possible because
of the linearity of the problem. The equation is invariant
provided

a—z:a—2———<%—1)(d+z). (16)

Using this equation and a similar one for p > 2, Eq. (9)
and z = 2 are proved. The transition at u = 2 is special.
A scaling form with the logarithmic correction

1

h(z,t) = b2 (Inb)2h' (2, t') (17)

is required to achieve the invariance. Equation (1) is then
modified to

for t <« L*
for t > L~.

ti(lnt)?
Wi(L,1) {L%(mL)%

The discrepancy between the values of the scaling ex-
ponents from simulations and Eq. (9) is due to the lack of
convergence at finite-length scales of n;y towards the sta-
ble laws. The convergence near the transition is slower
and is only marginal at the transition, corresponding to
the logarithmic correction. In the simulations, generat-
ing the discrete noise n(z, t) in Eq. (8) directly according
to the stable laws should eliminate the crossovers.

(18)

III. SCALING ARGUMENT
A. Regional surface-advance model

We now focus on the nonlinear KPZ case. We first
start with a simplified model, which will be generalized
subsequently. Consider the continuum equation

% = %(Vh)z + n(z,t), (19)

where h(z,t) is the interface height profile. The power-
law noise 7(z, t) is a superposition of independent events:

= Zg(m,w

where g corresponds to the advance of a whole region of
the surface by 7;. We assume a scaling form

g(n,z) = np[(A7 /n)"/*z], (21)

where A and o are constants to be specified later and the

— :El)(S(t —t,‘), (20)
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noise profile p is any positive-definite smooth function
with bounded support whose maximum is p(0) = 1. The
noise events have a uniform density 72(z, t,n) in space and
time and a power-law distribution in magnitude, i.e.,

for n > nm

22
for n < Nm. (22)

Apy—L
(e, tn) = { o7

Therefore A controls the intensity of the noise and 7,, is
the lower cutoff.

We apply a scale transformation z = bz’, ¢ = b*t/,
h(z,t) = b2k (2',t'), n = b*', N = b7, and n(z,t) =
b~ *n'(z',t'). The model defined by Eqgs. (19)—(22) is in-
variant if we put a+z = 2 [i.e., Eq. (5)] and ap = d+ 2,
which imply @ = ap(p). In the derivation, the trans-
formation of Eq. (22) is obtained from the invariance of
n(z,t,n)d% dt dn. We also assume that A has no correc-
tion upon rescaling and will be justified. Using this scale
invariance, the values of any given statistical measure-
ment at different scales can be related. In particular, the
steady-state surface width is now a function of L and 7,,.
We have

W (bL, b n,,) = b*» W (L, nm). (23)

There exists a similar invariance property with respect
to the following change of the noise intensity: A = cA’,
t =cXt', h(z,t) = c”h'(z',t'), n = ¢, and 1, = ¢7l,,.
Analogous calculations generalize Eq. (23) to

W ~ L% A%?, (24)
provided we put
T ~ L¥? AP (25)
— o) = — (26)
o=0p(w) = 7

and xy = —o. We stress that at the present stage where
we scale the cutoff and the noise profile, the scaling prop-
erties are not approximations or asymptotic results but
are ezact for all L and A and for all p > d + 1, even
beyond p..

We now add more terms to Eq. (19) to produce a gen-
eralized KPZ equation with power-law regional advance:

% =vV3h + %(Vh)2 + &(z,t) + n(z,t), (27)
where £(z, t) is the uncorrelated Gaussian noise. Suppose
that p < p, i.e., ap > ag, and that we scale the system
according to the usual KPZ exponents ag and 2¢; it is
easy to see that the power-law-noise intensity A increases
under coarsening. Therefore at sufficiently large length
scales, the surface is effectively “stretched” compared to
the pure KPZ case. This stretching upsets the balance
of the terms which have the same scaling behavior in the
ordinary KPZ case. That is, by simple power counting,
vV2h and £ are irrelevant compared to 3 (Vh)2. This can
be explicitly demonstrated in 14+1 dimensions using the
renormalization flow equations in Ref. [2] [21]. They are

directly applicable here because the smooth noise profile
being in the long-wavelength limit is irrelevant in the
renormalization of the underlying KPZ equation. The
coefficient A is not renormalized due to the invariance
of the KPZ equation under an infinitesimal tilt [13]. As
a result, Eq. (27) reduces to Eq. (19) and falls into the
same universality class. At any finite scale, this causes
a crossover. If A is small, so that the power-law noise
is negligible, we expect KPZ behavior. However, upon
coarse graining, so that Eq. (19) is approached, power-
law noise dominates and Eq. (24) applies. The effective
roughness exponent (L) for system size L thus crosses
over from ag to a, as L increases. In a similar way, for
1 > pe, A decreases under rescaling so (L) crosses over
from o, to ag instead. This proves Eq. (3) for this case.

B. Simulations and results

We verify the above results numerically for 141 dimen-
sions using a ballistic-deposition model with power-law
regional surface advances. We take the basic interface
evolution rule with Gaussian noise to be

h(z,t + 1) = $max{h(z,t), h(z + 1,t), h(z — 1,t)}
+h(z,t)] +£(2, ), (28)

where {(z,t) is a uniform random deviate in the range 0
to 1. The motivation for this unusual choice will be given
in Sec. V. Periodic boundary conditions and a parallel
updating algorithm are used so that growth occurs at
all even (odd) sites at even (odd) time steps. Power-law
noise occurs independently with much lower probability
according to Eq. (22). If power-law noise 7; occurs at a
site x;, a whole neighborhood advances instantly from h
to h+g(n;, x —z;). We take a truncated parabolic profile
function

p(y) = max{l — [y/(4 x 0.015'/%)]?, 0} (29)
and 7, = (%)QP(WAls)U”- Figure 2 shows a snapshot
of a growing aggregate with L = 128 and . = 3. One
rare noise event occurred that disturbed the surface by
pushing a neighborhood forward, leaving a big void.

A log-log plot of rms surface width W against L for
1 = 2 to 6 for a subset of our data with A = 0.015 was
shown in Fig. 1 of Ref. [17]. Also shown was the pure
Gaussian-noise case (A = 0), which bounds the other
curves from below. The local slopes of the curves corre-
spond to a(L). We can see the two different crossovers
mentioned above separated by the critical u. = 5 case.
To check Eq. (24), we have to adjust A to go beyond
the crossover region to the power-law-noise-dominated
regime. To do this, we need W to be significantly larger
than for A = 0. However, if W is too large, examina-
tion of the interface reveals that microscopic roughness
is smoothed out due to the strong stretching. The inter-
face is in a model-dependent “anomalous-growth mode,”
which is incompatible with the continuum description
[15] and resembles step flow in this case. Therefore
Eq. (24) is approached only for a narrow window: see
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FIG. 2. Growing aggregate of ballistic deposition with
rare instantaneous regional surface advances at p = 3 and
L = 128. The big void results from a rare event.

Fig. 1 of Ref. [17]. At large L and intermediate values
of A corresponding to this region, the fitted exponent «
was shown in Fig. 2 of Ref. [17]. a = a,(p) is nicely
verified for 4 2 3. The discrepancy for u ~ 2 is due to
the remnant of the crossover, which is more pronounced
for a,(p) very different from ag. The transition stated
in Egs. (3) is not evident here because we are showing
results in the power-law-noise-dominated regime instead
of the asymptotic regime.

The whole data set is presented in Fig. 3, where
W/L>®) is plotted against A in log-log scale. The ar-
rows point to the subset of data for Fig. 2 of Ref. [17],
where the good-data collapse for u 2 3 corresponds to
the fact that a = a,(p). The good agreement with the
expected slope (thick solid lines) verifies Eq. (26). For
u = 3 and 4, both the data collapse and the expected
slope break down for small A due to crossover and for
large A due to anomalous growth, while they hold for
a narrow range of A, which widens as L increases. For
the critical ;. = 5, data collapse is good for intermediate
values of A down to 0 in spite of the crossover because
ap(5) = ag. For p = 2, the collapse is good for large A
because it happens accidentally that anomalous growth
also gives a = 1 [20].

C. Lower cutoff of noise magnitude

We have so far proved formulas (3), (5), and (26) for
the generalized KPZ equation (27). We will now further
generalize the results. In Zhang’s model, the evolution
is defined by an equation similar to Eq. (28) with £ re-
placed by the power-law-distributed variable 7. We seek
to describe it using Eq. (27) by defining an effective lower
cutoff 7,,0. Large values of the noise, with 7 > 7,0, cor-
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FIG. 3. Rescaled surface width W/L*?(#) against noise in-
tensity A in log-log scale for 4 = 2 to 6. The vertical scale is
shifted by 1.5, 0.8, 0.4, 0, and —0.4, respectively. The arrows
and the solid lines are explained in the text.

respond to the rare large fluctuations represented by the
n(z,t) term in Eq. (27). The truncated lower part of the
spectrum with 1 < 7,0 behaves like Gaussian noise and
can be represented by the £(z,t) term.

We are thus led to consider a constant cutoff, 7, =
Tmo, instead of Eq. (25). For pu < p., assume that L is
large enough so that Eq. (27) reduces to Eq. (19) and
hence Eq. (23) holds. Rearranging Eq. (23) gives

W (L,nmo) = (L/Lo)**W (Lo, Mm (L)), (30)

where 1, (L) = (Lo/L)*Nmo- As L — oo, nm(L) — 0.
The term lim,, ,_,o W (Lo, 7m) approaches a constant, so
that Eq. (24) still holds asymptotically. This can be
demonstrated explicitly for the EW model (Sec. IV). For
the current nonlinear case, we argue that if W were to di-
verge, it could be made arbitrarily large by decreasing n,,
and the roughness would be dominated by the part of the
power-law-noise spectrum arbitrarily close to zero. This
implies that the large fluctuations are irrelevant, which
is not true in this case. For p > p., the large fluctuations
are irrelevant compared to both the Gaussian noise and
the smaller power-law noise and hence @ = ag. There-
fore, all our scaling formulas remain intact. At the crit-
ical u = p., we suspect that W diverges logarithmically
so that Eq. (30) gives

W (L, mo)? ~ L**¢ Inyo(L) . (31)

This logarithmic correction is motivated by the similar
result for the EW model derived in Sec. II and is in-
deed the principal reason why criticality was previously
overlooked [5,7,14]. We simulated Zhang’s model using
Eq. (28) with £ replaced by the power-law noise 7 fol-
lowing Eq. (2) for p = 5. A fit of the measured surface
width to the form W (L) ~ L* for L = 128 to 4096 gives
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a =~ 0.59 consistent with previous results [7]. However,
fitting over ranges from % to 2L gives the L-dependent
effective (L) shown in Fig. 4 of Ref. [17], implying that
a = limp 0 (L) < 0.59. The W(L) curve is in fact
well described by Eq. (31) as demonstrated in the inset.
This supports our value a = 0.5.

The result @ ~ 0.5 for 4 = 5 has been obtained nu-
merically using sequential updating [8]. Our simulations
show that this introduces another large correction due to
the larger “intrinsic width” [22]. This correction might
partially cancel the one due to the cutoff but significantly
increases the uncertainty in the measured a.

D. General noise profile

Finally we generalize the result to other noise profiles.
Consider replacing Eq. (21) by

g(n,z) = np[ln~/"z], (32)

where v > a. Under the scale transformation, Eq. (32)
is no longer invariant, as is Eq. (21), but p(y) has to be
replaced by p(bl“a/"y). As b — oo, p(y) approaches the
fixed point

sy )1 fory=0
p*(y) = {O for y # 0, (33)

which is a spike with finite height. Invariance is then
restored and our scaling formulas are applicable again.
Similar arguments can be applied to the general case
where ¢ is any given stochastic single-peaked positive
smooth function satisfying g(n,0) ~ n with the widths
of the peaks bounded by n'/® as 7 — co.

For Zhang’s model, an initial large fluctuation n cre-
ates huge roughness on the surface, leading to anomalous-
growth. Only after the fluctuation diffuses so that the lo-
cal slope everywhere is restored to moderate values will
the continuum description be valid again. The advance
of the interface during this anomalous-growth period less
the average growth can be set to g(n,z). By examining
growth rules like Eq. (28) and similar variants, we see
that g defined in this way can easily satisfy the criteria
specified above. In addition, the anomalous-growth pe-
riod is negligible compared to the dynamical time scale
of the interface for large scales, justifying the assump-
tion of instantaneous regional surface advances. There-
fore our theory should apply also for Zhang’s model. For
similar reasons, it also describes a growth model where
the elementary events follow a power-law waiting-time
distribution [23], and a recent simulation where disks of
random radii instead of sticks are deposited [24]. Due to
the very wide range of its applicability, it is possible that
this theory also describes the fluid-displacement experi-
ments, provided there exists, for some microscopic rea-
son, a power-law noise. At finite scales, the anomalous-
growth period is not negligible. This can cause another
important crossover.

IV. SCALING ARGUMENT FOR THE
EDWARDS-WILKINSON CASE

‘We now apply the scaling argument in Sec. III to the
EW model with power-law noise to reproduce most of
the results in Sec. II. We have represented the power-
law noise for the EW model in Eq. (10) which, when
compared to Egs. (20) and (32), corresponds to an un-
modulated profile p(y) = d(y). This representation is
different from the spike function p(y) = p*(y) defined in
Eq. (33) for the KPZ case, and the difference is crucial.
This is made evident by examining the early develop-
ment of a noise event. For the EW case, the diffusion
operator vV2h conserves the spatial integral of h(zx,t).
Thus the § function is a suitable choice for representing
a finite disturbance, while the spike function disappears
as it evolves. For the KPZ case, it is well known that a
simple parabolic peak spreads in time. Consider

h(z,0) = a — z?/b, (34)

where a and b are constants. We have discussed in Sec.
IIT A that Eq. (27) reduces to Eq. (19), and we can neglect
other rare noise events for the early stage of the evolution.
The surface evolves under only the 3(Vh)? term and the
solution is

h(z,t) = a —z%/(b+ 2)t). (35)

A spike corresponds to b — 0, and the solution describes
a well-defined expanding parabola with fixed height for
t > 0. However, the § function corresponds to a — oo,
which does not give a physical surface. The relevant
quantity characterizing a peak for the KPZ case is the
peak height, while that for the EW case is the peak area.
Therefore, in the continuum description, the noise pro-
files have to be represented differently by p*(y) and §(y),
respectively, even though they are incorporated similarly
in the discrete models. This difference also illustrates the
nonadditive nature of the noise in the KPZ case, since
two neighboring noise events corresponding to two spikes
will merge to a single parabola of the height of the higher
spike only, instead of the sum.

Having a representation of the noise, similar scaling
arguments as in Sec. III reproduce the scaling expo-
nents in Eq. (9) derived earlier in Sec. II. For this lin-
ear model, we can calculate the limiting properties of
lim, 0 W (Lo, nm) explicitly. We first express the solu-
tion of the EW model with power-law noise in Egs. (7)
and (10) as

h(z,t) = Z Gz — x5t — ti)mi,y (36)
ni (20m)
where G is the Green’s function satisfying the boundary
condition. Summing of the frequently occurring small
noise events with 7, < 7; < M0 gives

h(z,t) = k' (z,t) + /ddm'dt’ Gz —z',t —t')

mo
></ dn n(z,t,m) n,  (37)
n

™
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where the remaining terms for 7; > 7,,0 are collected in
h/(z,t), which represents a realization of a surface with
lower cutoff 7,,0. The random variable n(z,t,n) is the
number density of the noise events at z and ¢ of magni-
tude 7 with a mean 72(n) given in Eq. (22). Taking the
variance of Eq. (37), we get

W(L()’nm)z = W(L07 77m0)2
+/dd:1:'dt' G*z—2',t—t)

Mmoo
x / dn o2 (), (38)

where o2(n) = 7(n) is the variance of n(z,t,n). The
dependence of W (Lo, 7,,) on 7,, comes from the integral
over 77, which can be evaluated using Eq. (22) and gives

— 2—p f 2

2 _ JC1—cCapy, or u #

W(LOa 77771) - {63 —cq ln(nm) fOI‘ uw= 2. (39)
The ¢;’s are constants independent of 7,,. Therefore

lim, 0 W(Lo,nm) — 0 for p < 2, as argued in Sec.
IIIC. For p < 2, the limit diverges, indicating that the
power-law tail fails to dominate. At p = 2, the marginal
divergence leads to the same logarithmic correction in
Eq. (17).

V. ANOMALOUS GROWTH

In this work, we introduced a surface growth rule in
the KPZ universality class defined in Eq. (28) in order
to suppress anomalous growth. This discrete model can
be interpreted as ballistic deposition with partial slid-
ing. Consider a particle being dropped to a column
of height much lower than that of a neighbor. It will
neither stick to the area near the top of the neighbor-
ing column as in usual ballistic-deposition models, nor
slide downward all the way to the bottom of the column
as in random-deposition models. Instead, it only slides
downward halfway and then sticks. Adopting the present
growth rule has dramatic effects on the development of
large fluctuations. We simulated Zhang’s model at p = 2
with this rule. A snapshot of an aggregate is shown in
Fig. 4, where there is a developing large fluctuation. Ac-
cording to the halfway-sliding rule, a big step created
by the giant particle is split in the next time step into
two neighboring steps of halved heights. The splitting
continues and the steps diffuse back to a smooth surface
efficiently. This is in sharp contrast to the case of usual
ballistic-deposition models where the big steps propagate
laterally with their size decaying much more slowly [20].
Therefore, the present growth rule is able to suppress
much of the anomalous growth and decrease the crossover
effect discussed in Sec. IIID. The very smooth parabolic
noise profile p(y) used in the simulations in Sec. IIIB,
is also chosen to minimize the anomalous growth. Us-
ing other ballistic-deposition rules or profiles can lead to
slightly larger values in the measurement of «. However,
the qualitative features are unchanged. Similar increases
in the measured a due to anomalous growth have been

FIG. 4. Growing aggregate of ballistic-deposition model
with partial sliding for power-law noise of 4 = 2 and L = 150.

explained in the context of long-range correlated noise
[15].

The above precautions against anomalous growth are
able to enlarge the region in the parameter space where
the continuum description is valid (see Fig. 1 of Ref. [17]).
However, for small y or large noise intensity A, so that
the surface is highly stretched, the dynamics would still
be dominated by anomalous growth. In an earlier work,
we have demonstrated that, for u = d + 1, the scaling ex-
ponents a and z can be deduced by examining anomalous
growth without any reference to the continuum equation
[20]. We now show further that although the continuum
description gives the correct a and z, it is in fact not an
appropriate description at u ~ d + 1 because it gives an
incorrect prediction of scaling with respect to the power-
law-noise intensity. This is revealed in Fig. 3. For 1 + 1
dimensions at p = 2, the scaling converges to W ~ Al/2
at large A (thick dotted line), contradicting the contin-
uum exponent of 3 from Eq. (26). The correct exponent
% can be derived by examining the anomalous growth as
follows. The substitute for the continuum evolution equa-
tion (19), which becomes invalid now, is simply that the
steps advance one lattice constant laterally per unit time,
irrespective of the local slope and curvature [15]. The
model now characterized by Eqs. (20)—(22) and a fixed
lateral propagation velocity is invariant under the trans-
formation A = cA’, h(z,t) = c'/2h/(x,t), n = c'/?1, and
Nm = c/2y), from which the result follows. Previous
simulations [7,8,14] are deep in this anomalous-growth
regime. Therefore the crossovers characterized by the
continuum description shown in Fig. 2 of Ref. [17] for
© ~ d+ 1 were not observed.

It has been suggested that the surfaces in Zhang’s
model are multi-self-affine instead of self-affine and obey

L
cq(z,t) = % Z | h(z',t) — h(z' + z,t) |9~ z9Ha,

z'=1

(40)

If H, depends nontrivially on ¢, the surface is multi-self-
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affine. This dependence was found in previous simula-
tions [10]. However, in Sec. III, we have shown that the
surfaces are self-affine so that H; = o independent of
g. We suggest that the apparent multi-self-affinity re-
sults from anomalous growth. For the standard ballistic-
deposition growth rule used in Ref. [10], the dynamics
of the lateral propagation of big steps implies that the
step height 6 = |h(z',t) — h(z' + 2,t) | follows a power-
law distribution 1/§* at large § [20]. Therefore c4(z,t)
is not a well-defined quantity for sufficiently large g, at
least for small z, and diverges with increasing L. This
explains the result obtained [10]. We computed c4(z,t)
using the ballistic-deposition model with partial sliding
where anomalous growth is much reduced. We observed
a dramatic improvement in the self-affine scaling. How-
ever, even after anomalous growth is suppressed, cq(z,t)
at large ¢ can be problematic. This is because the con-
tinuum description in Sec. III and our simulations do not
rule out a genuine power-law tail of small amplitude in
the probability distribution of |h(z’,t) — h(z' + z,t) |.
We believe that well-defined convergent quantities will
always have simple self-affine scaling behavior.

VI. DISCUSSION

We have given an exact scaling theory for a gen-
eralization of the KPZ equation with power-law noise
that should describe the asymptotic behavior of Zhang’s
model. One may be tempted to apply the standard per-
turbative renormalization-group technique [2] directly.
We have explained in Secs. IIID and IV that the proper
representation of the power-law noise is the spike func-
tion in Eq. (33). However, in the unperturbed problem
with only the vV2h term, the spikes disappear readily.
However, they give finite fluctuations because v = 0 at
the fixed point when the power-law noise is relevant. As
a result, a perturbative scheme with vV2h being the un-
perturbed term might not easily accommodate power-law
noise.

Previous simulations on Zhang’s model indicate that
the exponent identity (5) is satisfied rather well [5,7,8],
even though the exponents themselves deviate signifi-
cantly from the true asymptotic values. The identity
was checked by measuring, in addition to «, the early-
time exponent 3 from the scaling relation W ~ ¢? for the
initial growth of a flat surface. For the EW case, Eq. (18)
means that this scaling also suffers from the logarithmic
correction, so that 8 would be overestimated. This is
similar for the KPZ case. Since both o and 3 are overes-
timated, the effect on the identity, which can be written
as a(1l+ 1/8) = 2, is partially canceled. Therefore, it is
not surprising that the exponent identity is quite robust
against crossover effects.

The logarithmic correction to scaling at the transition
point is quite generic. Similar behavior has been sug-
gested and explained for bounded long-range correlated
noise [16]. To arrive at a more unified picture, we look
at the current problem from a slightly different point of
view. After coarse graining the system by a factor of b, to

enforce invariance, the lower cutoff 7,, of the power-law-
noise magnitude should be raised to b*n,,. The truncated
power-law noise with magnitude between 7, and %7,
is lumped into the Gaussian noise. This is analogous to
the result that renormalization of long-range correlated
noise generates Gaussian noise [13]. At the transition,
both the power-law and the Gaussian noise are equally
relevant. Therefore, upon each stage of coarse graining,
both noises would be invariant if the Gaussian compo-
nent were not increasing due to the new contribution
from the truncated power-law noise. In fact, the Gaus-
sian component keeps growing and causes the logarithmic
correction. Asymptotically, the ratio of the intensity of
the power-law noise to the Gaussian noise approaches 0.
The analogous zero ratio for the correlated noise case has
been proved using the dynamical renormalization-group
techniques [13].

We believe that this work offers a definitive theoreti-
cal understanding of Zhang’s model. However, whether
the model explains the experiments is another question.
For the fluid-displacement experiments, Rubio et al. re-
ported o = 0.73 £ 0.03 [3], while Horvath, Family, and
Vicsek obtained a ~ 0.81 [4]. Recently, He, Kahanda,
and Wong found that the effective value of a varies con-
tinuously over 0.65-0.91, depending on a capillary num-
ber [25]. Some other seemingly related recent experi-
ments includes a bacteria-colony expansion experiment
[26], an experiment of wet-front propagation in paper
[27], and a paper-burning experiment [28]. The reported
values of « are respectively 0.78, 0.63, and 0.7. The KPZ
equation has been very successful in describing a diverse
range of discrete models, including ballistic deposition,
the Eden model, and directed polymers. Many of the
experiments mentioned above appear to have many com-
mon features with these models. It is quite surprising
that the KPZ equation, which predicts o = 0.5, appar-
ently does not account for any of them. An alternative
unified description has not emerged. Apart from Zhang’s
model of power-law noise [5], models where local pinning
is important have also been investigated [29,27]. Some of
them might be compatible with Zhang’s model if power-
law noise is effectively generated from depinning. Long-
range correlated noise is another candidate for some of
the experiments [13]. Most of these possible explana-
tions include some free parameters, so that the predicted
values of «, or effective «, cover wide and overlapping
ranges. It is evident that measurement of scaling expo-
nents alone is not likely to resolve the current confusion
in explaining the experiments.

A more thorough analysis of the dynamics of both the
experimental and simulated surfaces is essential. To this
end, Horvath, Family, and Vicsek have computed the
tail of the noise distribution and correlation in a fluid-
displacement experiment and indicated the existence of
power-law noise with short-range correlation [6]. There-
fore, the local pinning models can only be valid candi-
dates for explaining the fluid-displacement experiments
if power-law noise with comparable power and extent can
be measured from simulations. It should be fruitful to
carry out a similar analysis of the noise for other experi-
ments or computer models.



For a complete analysis of the surface dynamics, our in-
verse method [30] might be the most promising approach.
It is a general procedure to compute the continuum evo-
lution equation from data. We intend to apply it to sim-
ulated and experimental surfaces to resolve some of the
questions raised here.
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